Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Molecules ; 28(9)2023 Apr 27.
Article in English | MEDLINE | ID: covidwho-2312359

ABSTRACT

Pomegranate (Punica granatum L.) is a rich source of polyphenols, including ellagitannins and ellagic acid. The plant is used in traditional medicine, and its purified components can provide anti-inflammatory and antioxidant activity and support of host defenses during viral infection and recovery from disease. Current data show that pomegranate polyphenol extract and its ellagitannin components and metabolites exert their beneficial effects by controlling immune cell infiltration, regulating the cytokine secretion and reactive oxygen and nitrogen species production, and by modulating the activity of the NFκB pathway. In vitro, pomegranate extracts and ellagitannins interact with and inhibit the infectivity of a range of viruses, including SARS-CoV-2. In silico docking studies show that ellagitannins bind to several SARS-CoV-2 and human proteins, including a number of proteases. This warrants further exploration of polyphenol-viral and polyphenol-host interactions in in vitro and in vivo studies. Pomegranate extracts, ellagitannins and ellagic acid are promising agents to target the SARS-CoV-2 virus and to restrict the host inflammatory response to viral infections, as well as to supplement the depleted host antioxidant levels during the stage of recovery from COVID-19.


Subject(s)
COVID-19 , Lythraceae , Pomegranate , Humans , Polyphenols/pharmacology , Hydrolyzable Tannins/pharmacology , Ellagic Acid/pharmacology , Plant Extracts/pharmacology , SARS-CoV-2
2.
J Clin Med ; 12(4)2023 Feb 17.
Article in English | MEDLINE | ID: covidwho-2242600

ABSTRACT

Due to the key role of tumor necrosis factor-alpha (TNF-α) in the pathogenesis of immunoinflammatory diseases, TNF-α inhibitors have been successfully developed and used in the clinical treatment of autoimmune disorders. Currently, five anti-TNF-α drugs have been approved: infliximab, adalimumab, golimumab, certolizumab pegol and etanercept. Anti-TNF-α biosimilars are also available for clinical use. Here, we will review the historical development as well as the present and potential future applications of anti-TNF-α therapies, which have led to major improvements for patients with several autoimmune diseases, such as rheumatoid arthritis (RA), ankylosing spondylitis (AS), Crohn's disease (CD), ulcerative colitis (UC), psoriasis (PS) and chronic endogenous uveitis. Other therapeutic areas are under evaluation, including viral infections, e.g., COVID-19, as well as chronic neuropsychiatric disorders and certain forms of cancer. The search for biomarkers able to predict responsiveness to anti-TNF-α drugs is also discussed.

3.
Drug Discov Today ; 27(3): 848-856, 2022 03.
Article in English | MEDLINE | ID: covidwho-1729681

ABSTRACT

Coronavirus disease 2019 (COVID-19) has emerged as a serious threat to global health. The disregulation of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) cell signaling pathway observed in patients with COVID-19 has attracted attention for the possible use of specific inhibitors of this pathway for the treatment of the disease. Here, we review emerging data on the involvement of the PI3K/Akt/mTOR pathway in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the clinical studies investigating its tailored inhibition in COVID-19. Current in silico, in vitro, and in vivo data convergently support a role for the PI3K/Akt/mTOR pathway in COVID-19 and suggest the use of specific inhibitors of this pathway that, by a combined mechanism entailing downregulation of excessive inflammatory reactions, cell protection, and antiviral effects, could ameliorate the course of COVID-19.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Animals , COVID-19/metabolism , Humans
4.
Antioxidants (Basel) ; 10(8)2021 Aug 16.
Article in English | MEDLINE | ID: covidwho-1360717

ABSTRACT

Oxidative stress (OS), resulting from a disrupted balance between reactive oxygen species (ROS) and protective antioxidants, is thought to play an important pathogenetic role in several diseases, including viral infections. Alpha-lipoic acid (LA) is one of the most-studied and used natural compounds, as it is endowed with a well-defined antioxidant and immunomodulatory profile. Owing to these properties, LA has been tested in several chronic immunoinflammatory conditions, such as diabetic neuropathy and metabolic syndrome. In addition, a pharmacological antiviral profile of LA is emerging, that has attracted attention on the possible use of this compound for the cotreatment of several viral infections. Here, we will review the emerging literature on the potential use of LA in viral infections, including COVID-19.

5.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: covidwho-1309589

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the newly discovered coronavirus, SARS-CoV-2. Increased severity of COVID-19 has been observed in patients with diabetes mellitus (DM). This study aimed to identify common transcriptional signatures, regulators and pathways between COVID-19 and DM. We have integrated human whole-genome transcriptomic datasets from COVID-19 and DM, followed by functional assessment with gene ontology (GO) and pathway analyses. In peripheral blood mononuclear cells (PBMCs), among the upregulated differentially expressed genes (DEGs), 32 were found to be commonly modulated in COVID-19 and type 2 diabetes (T2D), while 10 DEGs were commonly downregulated. As regards type 1 diabetes (T1D), 21 DEGs were commonly upregulated, and 29 DEGs were commonly downregulated in COVID-19 and T1D. Moreover, 35 DEGs were commonly upregulated in SARS-CoV-2 infected pancreas organoids and T2D islets, while 14 were commonly downregulated. Several GO terms were found in common between COVID-19 and DM. Prediction of the putative transcription factors involved in the upregulation of genes in COVID-19 and DM identified RELA to be implicated in both PBMCs and pancreas. Here, for the first time, we have characterized the biological processes and pathways commonly dysregulated in COVID-19 and DM, which could be in the next future used for the design of personalized treatment of COVID-19 patients suffering from DM as comorbidity.


Subject(s)
COVID-19/genetics , Diabetes Mellitus/genetics , SARS-CoV-2/genetics , Transcriptome/genetics , COVID-19/pathology , COVID-19/virology , Computational Biology , Diabetes Mellitus/pathology , Gene Expression Profiling , Gene Expression Regulation/genetics , Humans , Leukocytes, Mononuclear/pathology , Leukocytes, Mononuclear/virology , Protein Interaction Maps/genetics , SARS-CoV-2/pathogenicity
6.
mSphere ; 6(1)2021 01 20.
Article in English | MEDLINE | ID: covidwho-1039855

ABSTRACT

The SARS-CoV-2 pandemic is impacting the global population. This study was designed to assess the interplay of antibodies with the cytokine response in SARS-CoV-2 patients. We demonstrate that significant levels of anti-SARS-CoV-2 antibody to receptor binding domain (RBD), nucleocapsid, and spike S1 subunit of SARS-CoV-2 develop over the first 10 to 20 days of infection. The majority of patients produced antibodies against all three antigens (219/255 SARS-CoV-2+ patient specimens, 86%), suggesting a broad response to viral proteins. Antibody levels to SARS-CoV-2 antigens were different based on patient mortality, sex, blood type, and age. Analyses of these findings may help explain variation in immunity between these populations. To better understand the systemic immune response, we analyzed the levels of 20 cytokines by SARS-CoV-2 patients throughout infection. Cytokine analysis of SARS-CoV-2+ patients exhibited increases in proinflammatory markers (interleukin 6 [IL-6], IL-8, IL-18, and gamma interferon [IFN-γ]) and chemotactic markers (IP-10 and eotaxin) relative to healthy individuals. Patients who succumbed to infection produced decreased IL-2, IL-4, IL-12, RANTES, tumor necrosis factor alpha (TNF-α), GRO-α, and MIP-1α relative to patients who survived infection. We also observed that the chemokine CXCL13 was particularly elevated in patients who succumbed to infection. CXCL13 is involved in B cell activation, germinal center development, and antibody maturation, and we observed that CXCL13 levels in blood trended with anti-SARS-CoV-2 antibody levels. Furthermore, patients who succumbed to infection produced high CXCL13 and had a higher ratio of nucleocapsid to RBD antibodies. This study provides insights into SARS-CoV-2 immunity implicating the magnitude and specificity of response in relation to patient outcomes.IMPORTANCE The SARS-CoV-2 pandemic is continuing to impact the global population, and knowledge of the immune response to COVID-19 is still developing. This study assesses the interplay of different parts of the immune system during COVID-19 disease. We demonstrate that COVID-19 patients produce antibodies to three proteins of the COVID-19 virus (SARS-CoV-2) and identify many other immunological proteins that are involved during infection. The data suggest that one of these proteins (CXCL13) may be a novel biomarker for severe COVID-19 that can be readily measured in blood. This information combined with our broad-scale analysis of immune activity during COVID-19 provides new information on the immunological response throughout the course of disease and identifies a novel potential marker for assessing disease severity.


Subject(s)
Antibodies, Viral/blood , COVID-19/diagnosis , Chemokine CXCL13/blood , Cytokines/analysis , SARS-CoV-2/physiology , Adult , Aged , Aged, 80 and over , Biomarkers , COVID-19/immunology , COVID-19/mortality , Cytokines/blood , Female , Humans , Male , Middle Aged , SARS-CoV-2/immunology , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , Young Adult
7.
Int J Mol Sci ; 21(22)2020 Nov 20.
Article in English | MEDLINE | ID: covidwho-945833

ABSTRACT

At least since March 2020, the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic and the multi-organ coronavirus disease 2019 (COVID-19) are keeping a firm grip on the world. Although most cases are mild, older patients and those with co-morbidities are at increased risk of developing a cytokine storm, characterized by a systemic inflammatory response leading to acute respiratory distress syndrome and organ failure. The present paper focuses on the small molecule MP1032, describes its mode of action, and gives rationale why it is a promising option for the prevention/treatment of the SARS-CoV-2-induced cytokine storm. MP1032 is a phase-pure anhydrous polymorph of 5-amino-2,3-dihydro-1,4-phthalazinedione sodium salt that exhibits good stability and bioavailability. The physiological action of MP1032 is based on a multi-target mechanism including localized, self-limiting reactive oxygen species (ROS) scavenging activities that were demonstrated in a model of lipopolysaccharide (LPS)-induced joint inflammation. Furthermore, its immune-regulatory and PARP-1-modulating properties, coupled with antiviral effects against SARS-CoV-2, have been demonstrated in various cell models. Preclinical efficacy was elucidated in LPS-induced endotoxemia, a model with heightened innate immune responses that shares many similarities to COVID-19. So far, during oral clinical development with three-month daily administrations, no serious adverse drug reactions occurred, highlighting the outstanding safety profile of MP1032.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Immunologic Factors/pharmacology , Inflammation/drug therapy , Luminol/analogs & derivatives , Pneumonia, Viral/drug therapy , Amination , Animals , Antiviral Agents/chemistry , Betacoronavirus/immunology , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/immunology , Cytokines/immunology , Female , Humans , Immunologic Factors/chemistry , Inflammation/immunology , Luminol/chemistry , Luminol/pharmacology , Male , Mice , Mice, Inbred C57BL , Pandemics , Pneumonia, Viral/immunology , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/immunology , Reactive Oxygen Species/immunology , SARS-CoV-2 , Vero Cells
8.
Int J Mol Med ; 46(3): 903-912, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-750592

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) is a novel ß coronavirus that is the etiological agent of the pandemic coronavirus disease 2019 (COVID­19) that at the time of writing (June 16, 2020) has infected almost 6 million people with some 450,000 deaths. These numbers are still rising daily. Most (some 80%) cases of COVID­19 infection are asymptomatic, a substantial number of cases (15%) require hospitalization and an additional fraction of patients (5%) need recovery in intensive care units. Mortality for COVID­19 infection appears to occur globally between 0.1 and 0.5% of infected patients although the frequency of lethality is significantly augmented in the elderly and in patients with other comorbidities. The development of acute respiratory distress syndrome and episodes of thromboembolism that may lead to disseminated intravascular coagulation (DIC) represent the primary causes of lethality during COVID­19 infection. Increasing evidence suggests that thrombotic diathesis is due to multiple derangements of the coagulation system including marked elevation of D­dimer that correlate negatively with survival. We propose here that the thromboembolic events and eventually the development of DIC provoked by SARS­CoV­2 infection may represent a secondary anti­phospholipid antibody syndrome (APS). We will apply both Baconian inductivism and Cartesian deductivism to prove that secondary APS is likely responsible for coagulopathy during the course of COVID­19 infection. Diagnostic and therapeutic implications of this are also discussed.


Subject(s)
Antiphospholipid Syndrome/pathology , Coronavirus Infections/pathology , Disseminated Intravascular Coagulation/pathology , Pneumonia, Viral/pathology , Thromboembolism/pathology , Thrombosis/pathology , Antiphospholipid Syndrome/immunology , Antiviral Agents/therapeutic use , Betacoronavirus , Blood Coagulation/physiology , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Disseminated Intravascular Coagulation/immunology , Fibrin Fibrinogen Degradation Products/metabolism , Humans , Pandemics , Phospholipids/immunology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , SARS-CoV-2 , Thromboembolism/immunology
9.
Int J Mol Med ; 46(4): 1266-1273, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-736764

ABSTRACT

The outbreak of the 2019 coronavirus disease (named, COVID­19), caused by the novel SARS­CoV­2 virus, represents a worldwide severe threat to public health. It is of the utmost importance to characterize the immune responses against the SARS­CoV­2 and the mechanisms of hyperinflammation, in order to design better therapeutic strategies for COVID­19. In the present study, a transcriptomic analysis was performed to profile the immune signatures in lung and the bronchoalveolar lavage fluid samples from COVID­19 patients and controls. Our data concordantly revealed increased humoral responses to infection. The elucidation of the host responses to SARS­CoV­2 infection may further improve our understanding of COVID­19 pathogenesis and suggest better therapeutic strategies.


Subject(s)
B-Lymphocytes/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Lymphocyte Activation , Pneumonia, Viral/immunology , Transcriptome , B-Lymphocytes/metabolism , Betacoronavirus/physiology , Bronchoalveolar Lavage Fluid , COVID-19 , Coronavirus Infections/genetics , Databases, Factual , Female , Gene Expression Regulation , Gene Regulatory Networks , Host-Pathogen Interactions , Humans , Lung/immunology , Lung/metabolism , Male , Pandemics , Pneumonia, Viral/genetics , SARS-CoV-2
10.
Autoimmun Rev ; 19(7): 102571, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-155063

ABSTRACT

The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) has posed a serious threat to global health. As no specific therapeutics are yet available to control disease evolution, more in-depth understanding of the pathogenic mechanisms induced by SARS-CoV-2 will help to characterize new targets for the management of COVID-19. The present study identified a specific set of biological pathways altered in primary human lung epithelium upon SARS-CoV-2 infection, and a comparison with SARS-CoV from the 2003 pandemic was studied. The transcriptomic profiles were also exploited as possible novel therapeutic targets, and anti-signature perturbation analysis predicted potential drugs to control disease progression. Among them, Mitogen-activated protein kinase kinase (MEK), serine-threonine kinase (AKT), mammalian target of rapamycin (mTOR) and I kappa B Kinase (IKK) inhibitors emerged as candidate drugs. Finally, sex-specific differences that may underlie the higher COVID-19 mortality in men are proposed.


Subject(s)
Coronavirus Infections/genetics , Coronavirus Infections/mortality , Pneumonia, Viral/genetics , Pneumonia, Viral/mortality , Sex Factors , Betacoronavirus , COVID-19 , Cells, Cultured , Coronavirus Infections/pathology , Drug Discovery , Epithelial Cells/virology , Female , Humans , Lung/cytology , Male , Pandemics , Pneumonia, Viral/pathology , SARS-CoV-2 , Severe Acute Respiratory Syndrome , TOR Serine-Threonine Kinases , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL